
Academia's Obligation
to Software Freedom

The case for Free Software within
educational institutions

By Danny Piccirillo

This free cultural work is licensed under the Creative Commons
Attribution-Share Alike 3.0 United States License.

© Danny Piccirillo 2009, Some Rights Reserved

This free cultural work, Acedmia's Obligation to Software Freedom, by
Danny Piccirillo is licensed under a Creative Commons Attribution-
Share Alike 3.0 United States License.

To view a copy of this license:
Visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

You are free:
• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

Under the following conditions:
• Attribution. You must attribute the work in the manner

specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).

• Share Alike. If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same,
similar or a compatible license.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get
permission from the copyright holder.
Other Rights — In no way are any of the following rights affected by
the license:

• Your fair dealing or fair use rights;
• The author's moral rights;
• Rights other persons may have either in the work itself or in how

the work is used, such as publicity or privacy rights.
Notice — For any reuse or distribution, you must make clear to others
the license terms of this work.

Piccirillo 1

The Free Software Movement is revolutionizing the way software

is made based on the ideals of freedom and openness. The sharing of

software is as old as computers themselves, but now it is done in a

concerted effort to completely transform the software world, and in

fact has spread so much that the same principles are now being

applied to content like writing, music, and other artwork, hardware

designs, business models, journalism, school systems, and even

politics and governance (Definition 2008). The Free Software

Movement is built upon the free exchange of ideas, open sharing of

knowledge, actualizing goals together, and working in a way that

benefits the community as a whole. The parallels between this

movement and the role of educational institutions in our society are

clear. If schools are true to this philosophy, they have an obligation to

be a part of the movement. Speaking with tech staff at Newton North

High School and diving into the local Free Software community, I have

found a number of ways to encourage and help schools to adopt Free

Software.

The details of the inner workings of computers may be

intimidating to most people, but to understand Free Software, only an

easily-grasped, basic understanding of some technical jargon is

necessary. These definitions are more than enough for one to be able

Piccirillo 2

to fully understand the philosophy of Free Software:

Hardware: The physical, tangible machine (hence, "hard"),

components, and devices like mice, keyboards, monitors, printers, and

the computer itself, are all examples of hardware. They are the things

that either the software runs on, or allow you to interact with the

software.

Software: Everything that runs on the machine. Microsoft Windows,

Mozilla Firefox, and all other programs and operating systems are

software.

Operating System (commonly abbreviated to OS): The interface

between the hardware and user. Ubuntu, Mac OS, and Windows are

popular examples.

Source Code: All software is made up of code written in programming

languages. The code that makes up software is called the source code.

Free Software leaves this source code open, as opposed to proprietary

software, which keeps the source code secret. Imagine software as a

slice of pie. If you can see, modify, and change the recipe, it's Free. If

not, it's proprietary.

Copyleft: The ingenious method of using copyright law to prevent

copyright restrictions. It grants permission to use, modify, and share,

Piccirillo 3

as long as derivatives preserve the same freedoms.

GNU (Gnu's Not Unix): Refers to the GNU Project, an effort to make

a Free operating system based off of Unix, a style of operating

systems, or to the GNU Operating System itself.

Linux Kernel: If operating systems, like Windows, were apples (the

fruits), the kernel would be the core. Linux is the name of the core of

the GNU/Linux Operating System.

GNU/Linux: Commonly called Linux, refers to the family of Linux-

based distributions. Distributions are like different flavors of the

GNU/Linux OS, the most popular being Ubuntu.

The Free Software Definition, first published in 1986 by Richard

M. Stallman, founder of the Free Software Foundation, lists the four

fundamental freedoms any piece of software must have to be

considered Free:

• The freedom to run the program, for any purpose (freedom

0)

• The freedom to study how the program works, and adapt it

to your needs (freedom 1)

• The freedom to redistribute copies so you can help your

neighbor (freedom 2)

Piccirillo 4

• The freedom to improve the program, and release your

improvements to the public, so that the whole community

benefits (freedom 3)

(Stallman 2002)

When unfamiliar people first hear the term Free Software, they

usually assume that Free refers to price as in "free beer", but instead

the "free" in Free Software refers to liberty as in "free speech" and

"free market". Software that is available for no cost is called freeware,

but isn't necessarily Free. Naming controversy has arisen around a

parallel movement that chooses to use the term "open source" which

doesn't regard freedom and only cites practical values. Sometimes the

term Free and Open Source Software (FOSS) is used, to combine the

terms. To resolve the ambiguity of the word "free", some replace it

with "libre", which distinguishes it from gratis software (zero cost),

and that has led to some using the term Free/Libre and Open Source

Software (FLOSS). However one refers to it, it still means the same

thing.

Those freedoms may seem very basic on the surface, but the

consequences are huge. In order for these freedoms to exist, access to

the source code is a necessary condition (Stallman 2002). Proprietary

software keeps the source code secret, and restricts people from

Piccirillo 5

viewing, modifying, and sharing it. Vendors who produce such

software make money directly from the software itself, and so they

depend on keeping their control over it. The company who owns the

software allows others to use the software under license agreements,

usually for a price. In other words, users must pay for a license that

allows them to use software that is owned and controlled by someone

else, and only use it in whichever ways are allowed by the end-user

license agreement (EULA). Not having the freedom to examine the

source code makes it impossible to determine what the software does

or how it works. Most people don't know how to modify their software,

so why should it matter to them? Even if one has no need to access

the source code themselves, it is still essential that it is open because

there are others that can. It could be spying on you, or doing anything

without your knowledge or consent. Instead of the user being in full

control of their software, it is really the software owner who controls it.

On top of that, any problems with the software can only be handled by

the software creators so if they neglect to address them, the users are

helpless. Proprietary software also tends to use unfair tactics to lock

users in and keep them from switching. Often, they will use

proprietary, non-standard formats that can only be used with their

software, so users are stuck with it and forced to pay for upgrades

Piccirillo 6

over time. These issues are non-existent with Free Software.

There is just as much pragmatism as idealism in the Free

Software philosophy. Free Software encourages people to examine,

share, and modify the source code, and in fact it thrives upon this. The

Free Software model is much more effective at producing higher

quality software, faster. Instead of development resting on the

shoulders of whoever owns the software, anyone is welcome to

contribute. Free Software is examined and developed by hackers and

programmers around the world. People working on improving Free

Software are most often volunteering, but many organizations with a

financial interest in the software will invest money or hire developers

to work on it. For example, Canonical, which makes money offering

paid support for Ubuntu, hires developers to improve it so that it will

gain more users and Canonical will have a larger potential customer

base (Moody 2008). All of this results in rapidly evolving software that

develops exponentially (Deshpande 2008). This means that the

software improves faster, bugs and security vulnerabilities are fixed

sooner, and innovation is fostered. The Free Software model produces

software that is quantitatively much better than the proprietary

alternatives in virtually every conceivable way. It has a lower total cost

of ownership (TCO), is safer, faster, more flexible, scalable, secure,

Piccirillo 7

stable, and reliable (Wheeler 2007).

A common myth about Free Software is that it is maintained by

a community of people and not by a corporate entity, the quality of the

product is greatly reduced (O'Reilley 1999). It is actually the openness

and transparency of the the Free Software development process that

makes the resulting software better, and, as mentioned before, many

Free Software projects are funded and developed by companies and

paid programmers. When new code is submitted to be included in a

free software project, it will first be scrutinized by several people

before it can be approved, so there is no risk of malicious

modifications. The pace at which a Free Software project evolves is

proportional to the popularity and usefulness of the software. This

means that any successful Free Software project is almost guaranteed

to be very reliable.

Another misconception is that Free Software is only secure

because less people use it so it is less of a target. The truth is that the

Free Software model inherently produces more stable and secure

software. With the code open and available for so many people to

examine, bugs and security vulnerabilities are found and responded to

immediately. As the notion of Linux's Law by Eric S. Raymond states,

“given enough eyeballs, all bugs are shallow” (Raymond 1997).

Piccirillo 8

Proprietary software relies on "security by obscurity" or hiding the

code to prevent the exposure of flaws, which has been shown over and

over again to fail. It is frequently the case that a patch to fix one

security problem in closed-source software has created another

problem or even failed to fix the actual problem, and other times a

vendor may leave a known flaw unresolved for months or even years

at a time (Wikipedia 2009). The open source software model doesn't

have these issues because it does not serve the interests of the

software owners. It exists for its users and will always improve in their

interest.

Other arguments against Free Software usually say things like,

there is no way to make money with open source software, or open

source software is anti-business, but Free Software is commercial

software as well (O'Reilley 1999). These lies are propagated by huge

marketing campaigns of fear, uncertainty, and doubt (FUD) to smear

Linux funded by software giants like Microsoft (Asay 2009). These

companies are incapable and unwilling to adapt to the changing

software world, and cannot compete with Free Software. The

proprietary software model is dying, and Free Software is unstoppable.

Linux is far more widespread than most people are aware.

Businesses, governments, schools, scientific institutions, and homes

Piccirillo 9

have all adopted Linux on a variety of platforms. Linux is used on

servers and desktop computers, is the most popular choice for

supercomputers, and, being open source, is included on many

embedded systems from mobile devices like phones, to gaming

devices, to media appliances like TiVo.

Aside from these technological and ethical reasons to adopt Free

Software, schools should immediately recognize the parallels of the

philosophy of this movement with academic freedom and the open

dissemination of knowledge and information common in academia.

Free Software is about sharing information. Free Software is about

learning from each other. Free Software is about community. This is

consistent with the function of schools, so they should be using Free

Software. "The advances in all of the arts and sciences, indeed the

sum total of human knowledge, is the result of the open sharing of

ideas, theories, studies and research. Yet throughout many school

systems, the software in use on computers is closed and locked,

making educators partners in the censorship of the foundational

information of this new age." (Vessels 2001)

Schools also owe it to their community to adopt Free Software.

The financial advantage of Free Software is especially important for

schools since taxpayer money should not be given to serve the

Piccirillo 10

interests of proprietary software providers when open source software

is available. On top of that, by using proprietary software at school,

students and their parents are forced into having the same proprietary

software at home, further propagating proprietary software's control

and suppressing Software Freedom. Finally, since all trends indicate

that Free Software will continue to grow at a faster pace than

proprietary software as it always has, there is an ever-increasing

demand for skills using Free Software. If schools are supposed to

prepare students for the future, they should be the first to abandon

proprietary software. Schools should be independent of corporate

control over their software.

In my work with Newton North High School, I've found that the

same roadblocks that stop people from adopting Linux personally exist

for schools as well. The main obstacle is simply that students,

teachers, and most importantly system administrators are reluctant to

change, but that quickly goes away once they have had time to warm

up to it. Another significant problem is government contracts requiring

schools purchase new hardware from certain companies that might

only sell machines with Windows installed. These roadblocks are

inconvenient but can be dealt with without too much trouble.

Piccirillo 11

I've found a number of ways to promote Ubuntu, a free

operating system, to the Newton Public Schools. As long as you have

one person from within the school system who is willing to work with

you, you can make progress. Firstly, it is best to start from the top and

work down from there. I contacted the Head of Technology for the

Newton Public Schools, Ms. Chamberlain, and she told me to start by

working to implement a test lab at North. I've worked with Chris

Murphy and Phil Golando to get two demonstration computers set up

in the school library and helped Mr. Golando install Ubuntu on his own

machine to get familiar with. Once the success of this lab is

recognized, other labs may be converted to Ubuntu as well.

Diving into the Free Software community around Ubuntu, I have

seen how local advocacy teams run and develop, and I've been able to

start a global team focusing on marketing and activism for Free

Software gaming. from my experience, I plan to take advantage of the

Free Software community and start an activist team to advocate Free

Software to schools and write a Free Software statement which schools

can sign to pledge their commitment towards adoption.

Free Software protects users' freedoms, all the while producing

better software that's more stable and safe and improves faster.

Instead of software being made by them for the usage rights to be

Piccirillo 12

sold to us, it is software owned by everyone, for everyone. Schools

would save money by adopting it, as well as prepare their students for

the future by adopting Free Software. Despite some obstacles that

educational institutions and school systems face migrating to Free

Software, they have an obligation to promote the fundamental

philosophy of freedom, openness, and sharing that the Free Software

Movement and academia share.

Bibliography

Stallman, Richard M. 2002. Free Software, Free Society: Selected Essays
of Richard M. Stallman. Boston, Massachusetts. GNU Press. http://
www.gnu.org/philosophy/fsfs/rms-essays.pdf (accessed May 6,
2009).

Moody, Glyn. 2008. Interview: Mark Shuttleworth, founder of Ubuntu.
http://www.guardian.co.uk/technology/2008/may/22/internet.soft
ware (accessed May 13, 2009).

Wheeler, David A. Why Open Source Software / Free Software (OSS/FS,
FLOSS, or FOSS)? Look at the Numbers!
http://www.dwheeler.com/oss_fs_why.html (accessed May 8,
2009)

Deshpande, Amit and Dirk Riehle eds. 2008. The Total Growth of Open
Source. http://dirkriehle.com/2008/03/14/the-total-growth-of-
open-source/ (accessed May 10, 2009).

O'Reilley, Tim. 1999. Ten Myths about Open Source Software.
http://www.oreillynet.com/pub/a/oreilly/opensource/news/myths_1
199.html (accessed May 10, 2009).

Asay, Matt. 2009. Facts behind Microsoft's anti-Linux campaign.
http://news.cnet.com/8301-13505_3-10145332-16.html (accessed
May 2, 2009).

Vessels, Terry. 2001. Why should open source software be used in
schools?http://edge-op.org/grouch/schools.html (accessed May 8,
2009).

Wikipedia contributors. 2009. Comparison of open source and closed
source. Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/
w/index.php?
title=Comparison_of_open_source_and_closed_source&oldid=2616
47655 (accessed January 2, 2009).

Definition of Free Cultural Works contributors. 2008. Definition.
http://freedomdefined.org/index.php?title=Definition&oldid=5437
(accessed May 16, 2009).

Raymond, Eric S. 1997. Release Early, Release Often.
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/ar01s04.html (accessed May 15, 2009)

	Bibliography

